

AS and A level Further Mathematics Core Pure Mathematics

Practice Paper Complex numbers (part 1)

You must have:
 Mathematical Formulae and Statistical Tables (Pink)

Total Marks

Instructions

- Use black ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer all the questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided - there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- Inexact answers should be given to three significant figures unless otherwise stated.

Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- There are 15 questions in this question paper. The total mark for this paper is 100 .
- The marks for each question are shown in brackets - use this as a guide as to how much time to spend on each question.
- Calculators must not be used for questions marked with a * sign.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.
- If you change your mind about an answer, cross it out and put your new answer and any working underneath.

1.

$$
\mathrm{f}(x)=9 x^{3}-33 x^{2}-55 x-25
$$

Given that $x=5$ is a solution of the equation $\mathrm{f}(x)=0$, use an algebraic method to solve $\mathrm{f}(x)=0$ completely.

(Total 5 marks)

2.

$$
\mathrm{f}(x)=2 x^{3}-6 x^{2}-7 x-4
$$

(a) Show that $\mathrm{f}(4)=0$.
(b) Use algebra to solve $\mathrm{f}(x)=0$ completely.
3. The roots of the equation

$$
2 z^{3}-3 z^{2}+8 z+5=0
$$

are z_{1}, z_{2} and z_{3}.
Given that $z_{1}=1+2 \mathrm{i}$, find z_{2} and z_{3}.
4. The complex numbers z_{1} and z_{2} are given by

$$
z_{1}=p+2 \mathrm{i} \text { and } z_{2}=1-2 \mathrm{i}
$$

where p is an integer.
(a) Find $\frac{z_{1}}{z_{2}}$ in the form $a+b$ i where a and b are real. Give your answer in its simplest form in terms of p.

Given that $\left|\frac{z_{1}}{z_{2}}\right|=13$,
(b) find the possible values of p.
5. \quad The complex numbers z and w are given by

$$
z=8+3 \mathrm{i}, \quad w=-2 \mathrm{i}
$$

Express in the form $a+b \mathrm{i}$, where a and b are real constants,
(a) $z-w$,
(b) $z w$.
6. Given that $z_{1}=1-\mathrm{i}$,
(a) find $\arg \left(z_{1}\right)$.

Given also that $z_{2}=3+4 \mathrm{i}$, find, in the form $a+\mathrm{i} b, a, b \in \mathbb{R}$,
(b) $z_{1} z_{2}$,
(2)
(c) $\frac{z_{2}}{z_{1}}$.
(3)

In part (b) and part (c) you must show all your working clearly.
(Total 7 marks)
7.

$$
z=5-3 \mathrm{i}, \quad w=2+2 \mathrm{i}
$$

Express in the form $a+b \mathrm{i}$, where a and b are real constants,
(a) z^{2},
(2)
(b) $\frac{z}{w}$.
8.

$$
z_{1}=-2+\mathrm{i}
$$

(a) Find the modulus of z_{1}.
(b) Find, in radians, the argument of z_{1}, giving your answer to 2 decimal places.

The solutions to the quadratic equation

$$
z^{2}-10 z+28=0
$$

are z_{2} and z_{3}.
(c) Find z_{2} and z_{3}, giving your answers in the form $p \pm \mathrm{i} \sqrt{ }$, where p and q are integers.
(3)
(d) Show, on an Argand diagram, the points representing your complex numbers z_{1}, z_{2} and z_{3}.
9.

$$
z=\frac{50}{3+4 \mathrm{i}} .
$$

Find, in the form $\mathrm{a}+\mathrm{i} b$ where $a, b \in \mathbb{R}$,
(a) z,
(b) z^{2}.

Find
(c) $|z|$,
(d) $\arg z^{2}$, giving your answer in degrees to 1 decimal place.
10. Given that 2 and $1-5 i$ are roots of the equation

$$
x^{3}+p x^{2}+30 x+q=0, \quad p, q \in \mathbb{R}
$$

(a) write down the third root of the equation.
(b) Find the value of p and the value of q.
(c) Show the three roots of this equation on a single Argand diagram.
11. Given that $x=\frac{1}{2}$ is a root of the equation

$$
2 x^{3}-9 x^{2}+k x-13=0, \quad k \in \mathbb{R}
$$

find
(a) the value of k,
(b) the other 2 roots of the equation.
12. (i) The complex number w is given by

$$
w=\frac{p-4 \mathrm{i}}{2-3 \mathrm{i}}
$$

where p is a real constant.
(a) Express w in the form $a+b \mathrm{i}$, where a and b are real constants.

Give your answer in its simplest form in terms of p.

Given that $\arg w=\frac{\pi}{4}$
(b) find the value of p.
(ii) The complex number z is given by

$$
z=(1-\lambda i)(4+3 i)
$$

where λ is a real constant.
Given that

$$
|z|=45
$$

find the possible values of λ.
Give your answers as exact values in their simplest form.
(Total 8 marks)
13.

$$
z_{1}=3 \mathrm{i} \text { and } z_{2}=\frac{6}{1+\mathrm{i} \sqrt{ } 3} .
$$

(a) Express z_{2} in the form $a+\mathrm{i} b$, where a and b are real numbers.
(b) Find the modulus and the argument of z_{2}, giving the argument in radians in terms of π.
(c) Show the three points representing z_{1}, z_{2} and $\left(z_{1}+z_{2}\right)$ respectively, on a single Argand diagram.
14. The complex number z is given by

$$
z=\frac{p+2 \mathrm{i}}{3+p \mathrm{i}}
$$

where p is an integer.
(a) Express z in the form $a+b \mathrm{i}$ where a and b are real. Give your answer in its simplest form in terms of p.
(b) Given that $\arg (z)=\theta$, where $\tan \theta=1$ find the possible values of p.
15.

$$
\mathrm{f}(x)=\left(4 x^{2}+9\right)\left(x^{2}-2 x+5\right)
$$

(a) Find the four roots of $\mathrm{f}(x)=0$.
(b) Show the four roots of $\mathrm{f}(x)=0$ on a single Argand diagram.

